A new similarity measure based on Bayesian Network signature correspondence for brain tumors cases retrieval

نویسندگان

  • Hedi Yazid
  • Karim Kalti
  • Najoua Essoukri Ben Amara
چکیده

Case retrieval constitutes an interesting area of research which contributes to the evolution of several domains. The similarity measure module is a fundamental step in the retrieval process which affects remarkably on a retrieval system. In this context, we suggest in this paper a similarity measure applied to brain tumor cases retrieval. The rationale behind the proposed measure consists in quantifying the diagnosis correspondence followed by a clinician while comparing two medical cases. Our idea is characterized by the use of the Bayesian inference in the formulation of the proposed measure. The Bayesian network is applied in the classification task and it describes the decision-making process of a radiologist facing a tumor. The proposed similarity algorithm is based essentially on graph correspondence based on signature nodes comparison from the Bayesian classifiers. experiments were directed to compare the performance of the proposed similarity measure method with classical methods of similarity quantification. The performance indices of our proposition are promising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Retrieval and adaptation in CBR through Bayesian Network for diagnosis of hepatic pathologies

This article describes a modeling of knowledge for a Case Based Reasoning system (CBR) applied to the diagnosis of the hepatic pathologies, where the cases and the knowledge of the domain are expressed by a Bayesian network (BN). In fact, we are interested in the retrieval and adaptation phases. The retrieval phase consists in selecting the most similar case of log linear model by considering t...

متن کامل

Evaluation of Similarity Measures for Template Matching

Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...

متن کامل

Applying BN in CBR Adaptation-Guided Retrieval for Medical Diagnosis

The Case Based Reasoning (CBR) is an approach of solving problem which is based on the reuse, by analogy, of past experiences called case. It is based on the retrieval and adaptation of the old solutions to the new problems. This paper presents a Bayesian adaptation-Guided Retrieval phase for a CBR applied to the diagnosis of hepatic pathologies. The main idea consists in a modelling the case b...

متن کامل

Optimising retrieval phase in CBR through Pearl and JLO algorithms for medical diagnosis

Case-based reasoning (CBR) is an approach of solving problem, which is based on the reuse, by analogy, of past experiences called ‘case’. Retrieval of cases is a primary step in CBR, and the similarity measure plays a very important role in case retrieval. We present a probabilistic retrieval phase applied to the diagnosis of hepatic pathologies. The main idea consists in modelling the case bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Computational Intelligence Systems

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014